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The vertical structure of atmospheric oscillations

formulated bo classical tidal theory
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Abs tract

From the equations of classical tidal theory with

Vewtonian cooling (Chapman & Lindzen, 1970), formulae are

obtained for wind, temperature and pressure oscillations

generated by thermal, gravitational and lower-boundary

excitations of given frequency. The analysis is an

extension of that of Butler & Small (1963) who formulated

solutions of the vertical structure equation in terms of

two independent solutions of the homogeneous equation and

derived expressions for surface pressure oscillations.

A comprehensive formulation is presented for wind,

temperature and pressure oscillations as a function of

height with the above-mentioned sources of excitation and
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an upper-boundary radiation condition. The formulae

obtained are applied at the surface leading to evaluations

of the surface oscillation weighting function Wp (z) which

weights the thermal excitation at height z according to its

differential contribution to the surface oscillation.

The formulae are shown to simplify at heights above a

region of excitation and evaluations are undertaken of the

thermal response weighting function Wt(z) which weights

the thermal excitation at height z according to its

differential contribution to the oscillation at any height

above the region of thermal excitation. Computational

procedures are described for obtaining two independent

solutions of the homogeneous equation and results are

presented for an adopted profile of atmospheric scale

height. The problem of deriving the surface pressure

oscillation due to a tidal potential is briefly reviewed

and results are presented as an example of the application

of formulae that have been derived.
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1. Introduction

Since the time of Laplace periodic oscillations of the

atmosphere as a whole nave provided a subject of constant

dynamical research. Tidal components, on account of their

known periodicities, have formed a major part of this study;

and reviews of investigations before 1950 have been presented

by Wilkes (1949) and Chapman (1951). Interest up to that

time centred chiefly around the periods of free atmospheric

oscillation and the so-cailea resonance theory, which

attempted unsuccessfully to account for the relatively large



magnitude of the solar semi-diurnal barometric oscillation

in terms of a free period of very close to 12 solar hours.

Subsequently, the thermal excitation of tides has received

increased attention and was included in the review of

Chapman & Lindzen (1970) from which the equations of

classical tidal theory have been taken for the developments

of this paper. In this Introduction some of the main

features and developments of classical tidal theory are

summarized.

The theory of oscillations in a compressible atmosphere

was initially developed as an extention of that of Laplace

and others (Hough, 1698) for a liquid ocean of uniform depth.

Whereas for an ocean the velocity and pressure variations

were independent of depth, the atmospheric problem introduced

a dependence on height z which under simplifying assumptions

could be expressed in terms of the independent variable

X f ()-)
where p0 is unperturbed pressure, poo is surface pressure

and H is atmospheric scale height. The fundamental

equation was

.-0
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where Y is the ratio of specific heats of air and I is

velocity divergence.

The quantity h in (1.2) is a constant of separation

between vertically- and horizontally-dependent terms in the

equations of motion and appears also in the equation for the

latitudinal variation of the pressure perturbation at a given

height. This variation is identical with that of the

perturbed depth of an ocean of otherwise uniform depth h

(Laplace's tidal equation), and it is customary to refer to h

as an equivalent depth of the atmosphere. The choice of h

in (1.2) is limited to values h 'S which are the eigenvaluesn

of Laplace's tidal equation for a given angular frequency of

oscillation V and zonal wave number s.

Use of the alternative forms of wave representation
Z(4f .t) and 4, where * is longitude and t is

time, has previously been discussed (Groves, 1979): the form

that appears more frequently in the literature is e

a being positive and s = 0, ±I, ±2, . . so that waves travel

westward if s > 0 and eastward if s< 0, and isl is the number

of wavelengths that fit a circle of latitude. The form

a t  will be used in the present paper (Equ. 2.21).

The suffix n is introduced as an identifying integer that is

assigned according to an adopted scheme of notation; then I,

s and n specify a mode of oscillation. In the present paper

a is taken as fixed and only s and n appear as suffices,



e.g. h . In order to reduce wie number of suffices attacning

nI

tc various symbols the conve-tion is followed from the end of

§2 onwards of denoting quantities dependent on s,n or summations of

such quantities by capital letters with the suffices s and

omitted, e.g. Q stands for 'I: capital letters will be used

exclusively for mode-dependent quantities and small letters

will be used exclusively for mode-independent quantities.

One exception to this rule will be the continued use of h for

hs and of H for atmospheric :cale height.
n

The extension of tidal theory to thermal excitation

requires the introduction of a forcing term on the right-hand

side of (1.2). Siebert (19bl) presented the relevant equations

and investigated heating by water vapour absorption of solar

radiation. If Jn(x) denotes the modal rate of heating pern
unit mass of atmosphere, (1.2) becomes

(_X~ 
i ti

where

- ' o_.j ~J"(7 ,. 14,-)

and g is a constant acceleration due to gravity.

For realistic profiies of scale height -, it is necessary

to solve (1.2) or (1.3) numerically. nefore 1950, solutions

of (1.2) were obtained by hand computation and differential



analysers for a variety of scale height profiles in order to

derive atmospheric response curves (Wilkes, 1949; Jacchia &

Kopal, 1952). Integrations were carried out from an upper

boundary height between 125 and 150 km down to the surface to

provide a (complex) solution y satisfying the upper boundary

radiation condition. y was then multiplied by a complex constant

determined by the amplitude and phase of the gravitational

tidal potential through the lower boundary condition which

required a vanishing vertical velocity component at the surface.

Numerical solutions of (1.5) were obtained with the aid

of an electronic computer by Butler & Small (1963) in an analysis

which showed heating by ozone absorption to be the dominant

generator of the solar semi-diurnal barometric oscillation.

'Butler & Small followed the procedure of Jacchia & Kopal (1952)

and obtained two real solutions yl, Y2 of (1.2) such

that yl + iY2 was the required linear combination satisfying

the upper boundary condition. The solution of (1.3) was

obtained by the method of variation of parameters in the form

where

and dashes denote differentiation. was determined as

previously to give a vanishing vertical component of velocity

at the surface (with the tidal potential now disregarded).



The availability of hign-speed computers has been a major

factor in reducing to manageaole proportions the task of

investigating thermal atmospneric tides for different choices
S

of H and Jn" Accordingly, Lindzen (196) integrated (1l.5)

as it stands by a method thau numerically applied the required

upper and lower boundary conditions: the corresponding tidal wind

and temperature fields as well as surface pressure were also

computed.

The present paper is concerned with developing the

analytical approach which has previously led to (1.5) and to

the following equation for the surface pressure oscillation

(Butler & Small, 1965)

-
)

-H3 (d/ k)f+Ly j

On examining the terms in (1.7) it is seen by (i.4), (1.6)

that the heating rate Js(x) contributes differentially to the
-S

surface pressure through the integral I n -,eightin functions

W (z) may therefore be defined for a given mode which weightp

Js(x(z)) in proportion to its differential contribution to the

surface pressure oscillation (Groves, 1975). In a similar

way thermal response weighting functions a (z) have teen

introduced (Groves, 1975, 19'76, 1977) whLch, for a given mode,

weight Ja(x(z)) in proportional to its differential contribution

to tidal fields of wind, temperature or pressure at greater
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heights. The derivation of 6 and a t has not previously

been given and is included in 10 and 11.

The simplifying assumptions under which (i.5) has been

derived are detailed by Chapman 5 Lindzen (197C): the more

significant approximations are considered to be the neglect

of (i) the Earth's topography, (ii) dissipation processes,

(iii) non-linear effects and (iv) winds and temperature

gradients in the unperturbed atmosphere. The analysis developed

within this framework of assumptions has been termed classical

tidal theory (Lindzen, 1968). The main advantage of the theory

over more general treatments is the considerable mathematical

simplification that arises from the separation of vertical and

horizontal dependences with respect to each mode of oscillation.

Tidal motion in general may then be represented oy a summation

of such modes which propagate independently of eacn other.

One notable extension of classical theory which preserves

separability has been the inclusion of ewtonian cooling, i.e.

a rate of energy loss that is proportional to the temperature

perturbation (Lindzen & hctenzie, 1967; Lindzen, 196b).

This form of dissipation will be included in tne present

analysis.

.i1
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2. Ep.ressions for horizontally-dependent terms

Before proceeding to the treatment of vertical structure,

series expansions of horizontally-dependent terms employed in

classical tidal theory will be developed. The series coefficients

introduced become the vertical functions involved in the later

analysis.

Let 4 be an atmospheric parameter which varies periodically

with constant angular frequency c- (>0) and let

= cO-5 9(.)

where e is colatitude. We omit the height dependence and write

where + is longitude, t is time and is a constant

having the same physical dimensions as 0 We define
I

Q Q e- ~.'

then
Qo ~YQL

Notation: Superscripts R and I are used to denote the real and

imaginary parts of a complex number and an asterisk its complex

conjugate.

is periodic in in the interval (0,2iw) and may be

expanded as a Fourier series

CO

where QC, QS are complex. It is convenient to replace q61 QS
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by Q±s defined by

Q .Q (.6 0)

Q-* Q -c 6- ( Q C6> 0)

;zQ -4 Q6  -d C,6>o

Then (2.5) becomes

Q 2 Q -e (7)

and (2.4) becomes

Terms in (2.8) having s positive (negative) represent a westward

(eastward) progression of phase. In the special case when

QS 0 (s s 0 So), (2.8) becomes

where
to1/ +( 2.,o)

t' is then local mean solar time if cY/s is equal to the solar

rate of rotation of the Earth and t is Greenwich mean solar time.

Q is a function of latitude and in classical tidal theory

is expanded either in terms of Hough functions s or of

Q that are related to 09s
Qn n



i:Q' Q® q.A (Q-.TP,S, ,J) t.Ii),

where, for Q U,V,W,T or P, the quantity Wo is the perturbation

of the eastward, northward, vertically upward components of

wind velocity, temperature or pressure respectively. For

Q= qJ, o refers to the forcing function o which is the

potential of an applied force per unit mass of atmosphere

(= -V o), and to J0 , which is the rate of diabatic heating

per unit mass or atmosphere. The summation in (2.11) is

taken over all members of the set of 8n satisfying Laplace's

tidal equation

4- @v4=

for -1 iJ 1A , where

5 Z-1 4)

and a0 is the Earth's sidereal rate of rotation, a its
00

radius and g0 the surface acceleration due to gravity. On

is the normalized eiGenfunction of (-.15) cooresponding to the

a Seigenvalue n . hethods for calculating h and ®n have

previously been reviewed (Groves, 1979).

Horizontal wind oscillations depend on horizontal gradients
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of 0~o +P 0 / o, where po is unlerturbed air density, and their

latitudinal dependence takes the form of (2.12) where

T e& L - I--

A method for obtaining Qn (E = UV) by series expansions
Qn

which avoid the indeterminacy of (2.15), (2.16) when j - f

has previously been given (Groves, 1979).

Hough functions belonging to the same set are orthogonal

and when normalized

-C I " (:)

By (2.4), (2.?) and (2.17), the coefficients in (2.11) may

then be obtained from Q as

it- Ce(, is)

for =WT,P,31 and J. An alternative expression that

follows from (2.18) on replacing ot by (t-l is

Qw e - Qb'y',) (2.1)

where by (2.1)
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Ot , ) - Q((2,.c t - ,/. -)

'S

The height dependence of o is expressed by %i

Notation: Capital letters wiLl be used solely and exclusively

for quantities dependent on s and n, the suffices s and n being

omitted, and for summations of such quantities. Capital

letters having suifices r,j (=1,2), e.g. Arj? Crj D oj, kr)

Ir' Kr' Pr' I P oI Ya and --- , are also dependent on s

and n. Exceptions are made with h s, scale height H and the gasn'

constant for air R

By (2.4), (2.7), (2.11) and (2.12), the expansion of 4 is

, = .- 2. )

where (Q) denotes Q for Q = UV or is otherwise omitted.

The factors I are chosen as follows

Ca=4v=ool J o ' = °ooo'

XLand L. will be introduced in W } and 4 respectively.
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3. Vertical structure relations

The equations of classical tidal theory are taken from

Chapman & .indzen (1970), where the height dependent functions

Un. %Vnt Wnt STn n n' Rn' 2rl are related to the quantities

U, V, W, r, P, St., J introduced in 1 2 by (2.21) as follows

S a Ta = ' V - .W

A dependent variable Y is introduced here to replace that iP

s I
denoted by y in (1.2), tly y n ii, 1.3) and by Yn in Chapman I

& Lindzen (1970). We write

2i

In place of U, V, W, T, i de begin by working in terms of

UV

' '!

'P LUe, /

where
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K. HI-.( ,A.

aT in (3.3) is a dimensionless quantity related to the rate

coefficient of Newtonian cooling denoted by a in Chapman &

Lindzen (1970). We have

CI a/' (3-6)

Then Log the rate of decrease of the temperature perturbation

Tog is given by

Lo/-1L -a 1 T/-- 0--)

where is defined by (2.22). For a single mode (2.18)XL
and (3.7) give

L 1 -T T 3.8

Classical tidal theory relates Y to Y by

- :Q ) (Q u,

where

-- _

.v (k4 i~

~P
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From (3.9) and (3.10)

T 11 f)3)

Y satisfies the vertical structure equation (Chapman &

Lindzen, 1970) which may be written as

lC"k)--e_ ' .T/I LT") . Ty-1.,

where

-QVd ,3.,5)

K. : - - 73.,7)

F=-  (/(3., Lq)

.A
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4. Vertical energy flux

The rate of flow of wave energy in a vertical direction

in a column of constant cross-section receives prominent

attention in tidal theory in connection with the formulation of

an upper boundary condition. As the time average of first-order

flux terms is zero, products of first-order terms need to be

retained. Following Wilkes (1949) the time-averaged vertically

upward energy flux at a given height in the notation of the

present paper is

where bracketed suffices denote averaged quantities. Hence

by (2.4)

To obtain the global average of this quantity we first average

over all longitudes to obtain by (2.7)

and then average with respect to from -1 to +1 to obtain

by (2.11) and (2.17)

where

E = 1RkQY v,) .

and 4 is defined by (2.22). By (5.3) and (5.9) it follows

from (4.5) that
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by (5.10). For x > x such that e-Y° N< 1, the term

in A* may be neglected and (4.6) reduces to

The accuracy of this approximation is better than 1 per cent if

-h = 0.01, i.e. if height exceeds about 70 km. For a

thermal source of excitation, t4.7) is exact.

If in place of (4.1) we take

it can be shown by (1.1), (2.4), (2.7), (2.11), (2.17)

and. (2,.22) that after a short reduction

on putting H p g0 / fo" Hence by (5.5), (5.9) and (5.10)

it follows that (4.7) holds without approximation. (4.8) takes

account of the flux of potential energy by replacing

P0 by P0 + foao, where fo is unperturbed air density, and

the energy flux :s evaluated with respect to an equipotential

surface for which the vertical velocity is -J2o/go by replacing

W 0 by W0 + /go" E is then zero for the equilibrium tide.



. General solutions for 1eirlht-aependent functions

Let Y 0 Yol, Yo be anr two independent solutions of

the homogeneous equation

0

and let Y = Y' ue a particular integral of 5.14), then the

general solution ot (5.14) is

where -0 oare arbitrary constants and A is defined by

.,otation: a = 1 X

:ny definition the 4ronskian of Y is

A-Q3)

and it follows from (5.14) and the Aoel-Liouville formula that

Y0 (x0 ), dY0 (x0 )/dx may be chosen arbitrarily as initial conditions

for the integration of (5.1), and nence ty (v.5) we may arrange

for w (x ) to be unity. This condition wiLi be introduced

later (Equ. 12.5) when initial conditions for the numerical

integration of (5.1) are considereJ. For tie present we note

that since -9- is mode independent, wo(x) is also mode

independent by (5.4).

By the method of variation of parameters a particular
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integral of (5.14) may be obtained as

Y- ) - f [Y)A j W da

where 
A N

-7

and xA is arbitrary. On substituting for Y' from (5.5)

into (5.2) we obtain

A

and hence that

where

~D cx I .)StLA) 4ct.5.q

The suffix j (= 1,2) will be used exclusively for the two

independent solutions of (5.1).

On substituting for Y in 5.9) from (5.7) and noting

from (3.10) that the operator is linear in d/dx, we obtain

by (5.8)
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S= IJbo< ^ !tQ -xc(.,U

where by definition

Q 4

From (3.10) and (5.11)

= 'y CjI

o n=. K . (K. +de i
yle. •Y

BY (5.9) we may write (5.7) as

and (5.10) as

-'A

onl putting x x Bs In (5.13), (5.14) x A and x B are arbitrary

values.



24-

6. WKBJ solutions for Y and E

WKBJ solutions of (5.1) are examined in this section in

preparation for the formulation of the upper boundary condition

in § 7. By a change of variable from Yoj to

where g is arbitrary, (5.1) reduces by (3.15) to

to
where

=F + - -6.)

If G were constant, the solutions of (6.2) would be sinusoidal

or exponential. In genera. G varies with height, but if the

variation is sufficiently slow, solutions of approximately

sinusoidal or exponential form may be obtained.

WKBJ solutions may be formulated for a range of values

of x for which

where suffix x denotes differeritiatior with respect to x.

Solutions of (6.2) are then apwlroximated oy

[G(x)]- exp [ f (u)i du}. Two independent 4KBJ sokutions

of (5.1) which satisfy initiaL conditions



dx

are given by

on using (6.1), where

- ~ F> ~16.1j)

The suffix r ( = 1,2) will be used exclusively for terms

associated with the two WKBJ exponential forms.

We define

[L + oo - Kr/LK(X)
cLXi

where

and Y oj dY oj/dx are derived from (o.6). Then (6.6) may be

written by (6.5) as
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A,1 I ~)ejJt1, + /\,j k p[L12' ) C62)

Putting . x in (6.12) we obtain

P'rj X.) + A~ t/ ) xIojL) C6,)3)

From (6.10) and (6.12) with x = ', it follows that

and from (6.14) that

We define

A r 09

' I i

then by (6.15) Cr1 is independent of x.

From (5.7) and (6.12), we obtain

-T, (Le 1, 1~~I k7)

where

-X --X A Ali .... I
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Putting g = x in (b.17) we obtain

(:,!L -f7 C =,X YL-X) C46.20)

It follows from (6.14) and (6.19) that

T' C S, X = 'P , - ) -r ea t),,] .

and hence from (6.17) that Y(x) is independent of .

On substituting (6.17), (6.18) into (4.7), we obtain by

(6.21) with ' = x

where

E -) 0/q, Kt-) I X~j -)

-- (aC./O [K )± Ljr C-X, X)) (6-2)

E is an upward or downward flux according- to whether -K R/hr r

is positive or negative. E' arises from an interaction

between the two waveforms whose sum is Y in (6.17).
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7. Formulation of the upper boundary condition

Let xL be the upper limit to the range of x for which a

solution for Y is sought. To obtain a boundary condition at

x = xL consideration needs to be given to the properties of

the atmosphere at x > xL. Following previous accounts (Wilkes,

1949; Butler & Small, 1963; Lindzen, 1968) we assume that

(1) the energy flux remains bounded as x-.- and (2) the

radiation condition holds, which means that there is no

incoming energy at large values of x. The radiation condition

is usually applied on the assumption that H aiid aT are constant,

but the following assumption is less restrictive. de assume

that a value of x L ( >, XS) can be found such that:

(i) S = 0 (x > X) X1 )

(ii) WKBJ solutions are valid for x > xL

(iii) For x :- XL, either

(a) C (7.2)

or (b) R> 37IL*)

By (5.6), (i) requires that fcr x > xS

J = 0 (7.4)

,6j A 0 C7.S)

as the two sources of excitation are independent. (7.1) is

readily satisfied by taking x 8 at a height above the region

of heating whose effect is beinr investigated. For example

-- "~ ~ -l l . .. .. ... .. . . . ....
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the combined effects of tropospheric, stratospheric and

.mesospheric heating could be investigated by taking xS at

90 km altitude; or the contrioution of tropospheric heating alone

could be investigated by taking xS at say 15 km altitude.

(7.5) requires, by (5.4) and (5.6), that either 0 0 or

C 0 to an acceptable order of accuracy for x > xS.

Applying (i) to (5.9) gives

ost-,-)~ ~ ~ -- (ts "> ) 7.6)

Then (6.19) with XL and (7.6) give

ECL~) r CDCL,XS X7 >' L) C7. 7)

Hence under (i) and (ii), (6.17) holds and becomes by (7.7)

on putting g xL

X. > xL) (7.8)

From (6.8) we have

K," - ,t+ f ' K r'- ' ,
K r R + r'

Hence under (iii) (a)

K' 1<1 < (X >X ) (7. ,o)
1 Ia( -0

and we choose ro ( I I or 2) s, -L tnat K <  0 and K, > 0

where r' is given by (6.11). By (6.7), (6.23) and (7.7) B is0 r 0



unbounded as x - unless

(7.11) provides an upper boundary condition for the solution

of Y .n the region xo ,< x '< XL .

Under condition (iii) (b), we have

KXK I >

as (iii) (a) does not now hold; and by (7.9) that

< 0 %:. L (.3)12.

The requirement for a bounded energy flux excludes coth K1
I T

and from being negative and (7.12) therefore yields K- > 0
22

and K > 0. By (7.15) the terms in (7.d) are then associ-

ated with either upward or downward finite energy fluxes,

which by (6.23) with = xL and (7.7) are

Er -3/)S eK >[ -x)I -7 14..)

R RWe choose rO ( = 1 or 2) such that Kr /h > 0 and Kr ,/h < 0,
0 0

then by (7.14) E is a downward flux and E' , an upward flux.0 ro

Under the assumption of the radiation condition, we require

Er = 0 for large x. Hence by (7.14) Pro(xL,Xs) - 0 and the

upper boundary condition is again ,;iven by (7.11).

By (5.9) and (6.19), we can write (7.11) as

.5 [Ar (-XI.) ACu] 2(.)As ~.(A'A,~)

On dividing by Aro2(xL), (7.15) becomes by (t-,.-)

• .... .. ...r42._
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An upper boundary condition is provided by (7.16) with the

appropriate choice of r0 , i.e. ro= 1 or 2, such that either

K (x) < 0 (under (iii) (a)) or KR (x)/h > 0 (under (iii) (b))

for x >,xL .

At this stage we are at)le to identify (1.5) with the peneral

solution (5.13) subject to the condition (7.16). By (5.9)

UL) = J O X J1i L

Hence, since S(u) = 0 for x > x., (7.16) becomes

A-C 0

and, on replacing xA Dy XL, (5.13) becomes

Then, since Cro2 = 1, (7.15; and (7.19) give

00

By (3.2) we may identify the complex conjugate of (7.20) with

(1.5) by writing

C0

hl A .. _.. .. , . . ... ... .. ,... . . . . .. , -. , ..... - |
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(7.23)

(7.22) is in accord with (1.4), (2.22), (3.1), (3.2) and

(5.5), but (6.16) imposes a condition on yl(x), Y2 (x) for

x > XL, which by (7.23) becomes

Hence

For an atmospheric 'top' (i.e. x >1 xL) having constant scale

height H and no dissipation, i.e. aT = , we have by

(3.4), (3.18) and (6.3) that G is the real constant

K(H/h)-4. If G < 0, (7.9) and condition (iii) (a)

require ro = 2 and (7.25) gives

If G > Os (7.9) and condition (iii) (b) require ro  1

and (7.25) gives

(7.26) and (7.27) are the forms of solution introduced at

high level by Wilkes (1949) for this type of atmospheric



'top'. In general (7.24) with x = xL provides the upper

boundary condition in a form that may be applied to a numerical

integracion scheme (Lindzen, 1968).

It is now possible to express the upward energy flux at x >X L

in terms of the WKBJ solution for Y. 4hen (7.11) holds, (7.7) gives

and hence from (t.kl) with -= ' x

Therefore by (b.20)

?, ~)& -(X > XL) (730)

and the upward energy flux kin units o , may be written

oy (6.24) as

RR

where K ,/h <.
r0
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8. The YQ relations

Arbitrary constants of integration .-z0 , Io2 which were

introduced in 0 5 have since been retained in the analysis

and in particular in the upper boundary condition (7.16).

We now turn to their elimination by introducing another

relation such as a lower boundary condition. We take the

general form of boundary condition expressed by (5.14) and

defer its identification with the lower boundary until the

last paragraph of this section.

From (5.15), (5.14) and (V.16) on eliminatin, .o. XA),

,o2(xA) we obtain

where ; - U, V, W, or P, ro = 1 or 2, a a XA, x8 are

arbitrary. On putting xB =x A  (8.1) expands as

%Y.') L ',-^o,-]5,, N Q (-XA) -X Y 30"
= +Q A ) N kA )

A xA



where
0

An alternative form of (8.2) iiay be obtaineI y puttlri.'

xA = XS, xB t xA in (6.1) and expanding, as

(8.5) also follows from (zi.2) on usinF t he ffentity

MQX A, IANQ(O,x)- NQIA,X)NQdIYA,,\ : ,.^i..

As xA is arbitrary we may pull xa  x ax- (d.) ax:d

obtain

C , -

The introduction of an upper boundary condition therefore

enables Y to be related to a sin ;le Yk whereas k.I) te

(3.15) related Y to two different Y .

As the left-hand siue of . i.s .de:e:, t ci x h: •

, both of which may be asE3i,,neU ar ,itrrx'i'", te ,-

- . . . . ,_,, .. . . , . . .. . ,_. -_ .... ,
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side may te written in two way3 to give

*1 I@ , ( u)uclj

tiy means of the identity 
15

(o.8) may be expressed as

A

:'A <s 1'o)

From (8.8) or (b.10), YP(x) may be evaluated for a given

source function S(u) provided Y V(x ) is known for some

particular Q' = U, V, 4, T or I. We choose '. = . and

introduce as a lower boundary condition at x x a Known

vertical velocity of the atmosphere expressed non-dimenfionally

by W(xA).



9. Formulae for the vertical dependence of oscillations

As a consequence of the linearization employed in

classical tidal theory the results of § 8 show that oscillations

of an atmospheric variable are independently related to the

potential field, JL, the diabatic heating, J, and the vertical

motion, W(XA), at the lower boundary. For a ripic, horizontal

lower boundary W(xA) = 0, but more generally Earth surface

tides contribute to W(xA) and the constraint imposed on air

motions by an undulating terrain introduces new modes that

have non-zero values for W(xA). We tnerefore express

= U, V, W, T and P as the sum of the three above-mentioned

contributions by

By (3-3), (5.6) and (8.8) with 4' W we obtain

=~~ N.LJ~,C ~~A (9.2,

L(-X M (4")QUA

"A

+ M suo "Cx L. ah (U.-(U

XA +

+W W ,i , T-



W- W (-AX [ -JrA)- ~ ~ hk IL

Ai A +L

LI (t)l L~x' W (x) -30 Lrcs A x')EJh(. )-L M ihIdk

C- )d4tCt) TJ (X) (- ?-LY C

A'

±(*lVJ)J wi ~ t (swN



[eL H -/o (x) = Z L P A,,X V"Q-A)

A

LH/L-1 Lc- MJ(; .,-) J T',,.) (,,.

-Q 1 Hx&=N/F(u), 'I'l(.,,

.'LA

for Q = U V, w, T or P and %,' J or S. An alternative

set of relations to (9.2) to (9.14) may be derived from

(8.10) in a similar manner.

m1
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10. Oscillations at the lower boundary: surface oscillation

weighting function Wp

Expressions ir oscillations at the lower boundary may

be obtained from (9.2) to (9.14) on putting x = x.

Alternatively, such expressions may be obtained from (o.10)

with x = xA .  The latter procedure is followed as the

resulting equations simplify more readily: use is made of the

relations

which follow from (3.10), (5.3) and (5.11); and of

-' =-I£ .I(,) N

2.
K.IO.3)

which follow from (5.12). From (8.10) we obtain by (3.3)

and (,9.16)

UwC ,A = LU(,AXA)-A) (o.)

,%%

U ICA (10. 7

Ww(XA) = W=xA) 00o7)

. . .. .. . . . . . . . . .... . .. .. . . .. )
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TW(%A) L L I

4- UO2~) T dj IO. 13N

[eXA

TTc
Trt~A) = I. i..

where-A
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Equations (10.6), (10.11) aind (10.14) show that NJ(XA,U)

may be interpreted as a function of u that weights J(u) in

the interval (u, u+du) according to its differential

contribution for this interval to oscillations in horizontal

velocity, temperature or pressure at the lower boundary.

By (1.1) it follows that

weights J(x(z)) in the interval (z, z+dz) according to its

differential contribution for this height interval to the

lower boundary oscillations.

W p(z) has been evaluated for the migrating (s = 1) modes

of solar diurnal frequency designated by n - +1, ±2, . . ±6,

the corresponding values of h being taken from Chapman &

Lindzen (1970). The atmosphere is assumed to be

non-dissipative having aT = 0 and hence by (5.18) and

(6.5)

C! Hw. Mt HA1z F/~ f, (10.7)

K is taken to be 2/7 corresponding to Y 7/5. The

adopted profile of scale height H is shown in Fig. 1. For

negative n it is found that G is real and negative, and

hence from (6.8) that K1 , K2 are imaginary. From (6.16)
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50

5 10 15 20 25H km

Fig. 1 Profile of scale height H.

100 1

km km km

50 404

0I-t 1r,- ,-

0 00 I 0
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40 40 40-

0 I 0 I 0

Fig. 2 The negative real part -WR of W (Equ. 10.16)
P P

plotted on an arbitrary scale for solar diurnal

modes with s - 1, n=-1, . . . -6. I= .

(s,n) is shown on each graph.
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Fig. 5 Real and imaginary parts of W plotted on an
p

arbitrary scale for solar diurnal modes with

s ,n ,6 Key: -W-R -
p p

(s.n) is shown on each graph.
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Crj are then real if Y oj(x) are taken to be real when solving

(5.1); and hence W (z) is real by (8.4) and (lO.l). If the
p

heating maximizes at the same time at all heights, i.e. if

arg J(x) is constant, it follows from (10.6), (10.11) and

(lO.14) that the phases of the lower boundary oscillations

are in quadrature with it, i.e. they maximize earlier or

later by 6 h. Fig. 2 shows Wp (z) on an arbitrary scale

for the first six negative migrating diurnal modes (s = 1,

n = -1, . ., -6). Such modes are referred to as trapped

modes as the generation of an oscillation by a region of

heating decays in either vertical direction away from the region.

The greatest contribution to an oscillation at the surface

therefore arises from atmospheric heating ciosest to the

surface, and there is an exponential-like reauction in the

contribution to the surface oscillation with the heijnt of

the heating.

For positive (n > 0) diurnal modes A (z) is complex
p

and an oscillation at the surface can be resolved into

components that are respectively in phase and in quadrature

with the heating. The vertical structure of W isP

oscillatory dividing the atmosphere into positiveiy and

negatively weighted regions (Fig. 3). Yrom tne graph of

W for n = 1 it is seen that tropospheric heatint, wouldp
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80 so so

(2,21 12,3) (2,41
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I
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(2,5) (2,6) 12,7)

40 40 40

0 I 0 -1 0

Fig. 4 Real and imaginary parts of W plotted on an
p

arbitrary scale for solar semi-diurnal modes

with s (s2, n i 2, on ey: gr Ra
pW . (s,n) is shown on each graph. The

imaginary part of (2,2) is negligibly small

compared with the real part.
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be weighted with the same sign at all heights, wnereas

ozone heating which extends irom about L0 to 00 km is weL,::.ted

by two positive and two negative regions thereby reducing its

effectiveness as a generator of surface oscillations. For

larger values of n, vertical wavelengths snorten and th e

effectiveness of tropospheric heating also becomes reauced

by cancellations between positive and negative regions.

Fig. 4 shows Wp for the first six migrating (s = 2)

semi-diurnal modes. For the leading mode (n = 2) W has thep
same sign at all heights and hence tropospheric :.eating and

stratospheric heating combine in generatin- surface

oscillations: although W decreases with height, ozone heatiilfP

may be shown to be the main contributor to surface oscillations

by adopting a typical profile of tropospheric and stratospheric

heating (Groves, 1975). For increasing n, values of h

decrease and W become increasingly oscillatory. For n = 7,P

Wp is almost identical with that for n = 1 in Fig. ' as

both modes have nearly the same value of h (i.e. 0.70o and

0.691 km).



ii. uscillations above a regioni of excitation: therr:31

response weighting function W

Above a region of excitation, expressio:is for the

oscillations of atmospheric variables simplify. with

x > xS, (o.;) and (8.8) reduce to

,e, = L C. ,A, A -X",) oQ U vJ. -r -P 0,.2)

where by [.5), (5.6) and (9.15)

~&) ~J~) A .((A) [N4 (lxAA)- (a)M, -U) (Jjdu (u0.3)

Tnen, by (5.6) and (11.2),

-0 ~ LU~~A)4()(I.

W - L-W (XA X) 'I "LA) '

[D).,. T (( ] T1) 7 L , -- x A, -"

We define

Wt 12) :Mw-T .'"'i I .,s

then it follows from (11.5) that Wt(z) weights ;(x(z)) in the

interval (z, z+dz) according to its differential contribution

for this height interval to i(xA) and hence by (11.4) to
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Fig. 5 The real part W of W (Equ. 11.8) plottea on
t t

an arbitrary scale for solar diur.al modes with

s 1, n = 1, . . . 6. WIt - . (s,n) is shown

on each graph.
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(11.7) to the oscillations at any Riven x > x.. Flots of

?t on a relative scale are shown in Figs. ' and o for positive

and negative solar diurnal modes with the same atmospheric

data as in 6 10. Wt is real for a non-dissipative atmosphere.

For positive (n > 0) diurnal modes, Wt is oscillatory

dividing the atmosphere into height intervals which

make alternate positive and negative contributions to

the oscillations at a given height above the region of

excitation. The greatest weights are given to excitations

at the lowest heights on account of the exponential-like

growth of amplitudes on propagation into air of decreasing

density. Excitation by the region of ozone heating is

much reduced by the cancellation of positive and negative

contributions, the reduction being greater for higyher values

of n.

For negative n (Fig. o), imodes are characteristically

trapped ard above a region of excitation the greatest relative

contribution to oscillations at a given height arises from

the uppermost levels of the excitation: hence a+ increases

with height. For n = -1 the trapping character is weak

and the effect of a region of heating extends over a

considerable range of heights.

Fig. 7 shows Wt for the first six migratinf (s = 2)

semi-diurnal modes. For n - C, wt changes sign at 15 ki

and therefore tropospheric heating and stratospheric heating<

LA
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km km km
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Fig. 6 As for Fig. 5 with s 1 i, n = -1, . .
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R
Fig. 7 The real part Wt of Wt plotted on an arbitrary scale

for solar semi-diurnal modes with s = 2,

n = 2, . .7. WI -0. (s,n) is shown on

each graph.



generate opposing contributions to oscillations above bC Km.

For increasing n, Wt become increasingly oscillatory and the

extent .o which the contributions from tropospheric and

3tratospheric heating to oscillations above 60 -m comibine

or oppose one another is dependent on the structure of the

heating profile. For n = 7, Wt is almost the same as that

for n = 1 in Fig. 5.

The upward energy flux (in units of Z) at x > xxL

has been expressed by (7.31). By (1i.1) this becomes

E -x) (r,1/4)K( 3C(".)

where K,/h < U.r
0

12. Notes on computational procedure

Let (O,xE) be the range of x for which computations are

undertaken, then in order to evaluate Cr xE needs to exceed
0

XL. Initially xL is not known but values of xE corresponding

to 150 km have been found to be adequate. Two independent

solutions Yol, Yo2 of (5.1) then need to be obtained by

stepwise integration. With equal step-lengths an undesirable

loss of numerical accuracy results if solutions are exronential

in form. The difficulty is readily overcome by a change of

variable from Yoj to in Yoj, but a criterion is needed ry

which to determine in advance of the integration process
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whether or not such a form of -,olution is to be expected.

A criterion which has been found suitable for treating the

solution as exponential-like is that

for all values of x in (Ox), where Fl is defined by (6.9).

Case (i): I < for at least one value of x in (O,xE)

Yoj is obtained by stepwise integration of (5.1) in the

form of two first-order equations

+ (12. 3)

where Ylj is an auxiliary variable. The integration is

started with initial conditions

y,,1(o) =_e) I€,O o

d x

where C is arbitrarily taken to be the average value of G in

(OXE. From (5.3) and (12.4)

Case (ii): >/ R for all x in (O,xE)

We write



where K is a constant which it will be shown can be chosen

such that (12.5) holds. An auxiliary variable X is

introduced by

then (5.1) reduces to a Riccati's equation

2.129

C4 X

Initial conditions for Yol, Yo2 are taken to be

Ilo - -22(o c)) -I2' )

dx
-j1j (0) C( 4 "A (0)- 2.)

where G is arbitrarily taken to be the average of J in (O,xE).

(12.9) and (12.10) are appropriate to solutions that initially

decrease and increase respectively with exponential form fron

the same initial value and satisfy (12.5). by (12.6),

(12.7) the corresponding conditions for Xoj are

()--- 0 d)~,~(o _ U , .,,0)
dx

on choosing

-_"2
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The computational procedure would then be to integrate (12.8)

followed by integration of (12.7) for each of the initial

conditions (12.11), (12.12) and then Y ol Yo2 would follow

from (12.6) using (12.13).

When (12.8) was integrated with initial conditions (12.11),

(12.12) for the case of G real and negative, corresponding

to a non-dissipative atmosphere and solar diurnal modes with

negative n, it was found that the solution with (12.11) after

initially decreasing changed to one that increased with x.

The reason for this behaviour may be seen by writing (12.8)

as

by (3.17) and (6.3). For a non-dissipative atmosphere,

= 0, and with initial condition (12.12), variations in G

from U result in a solution X1 2 (x) [-G(x)]" and

dX 1 2/dx - 0. With initial condition (12.11) however the

same variations in G from U result in a solution

X1 1 (x) *$ -[-G(x)]3 as there is no corresponding change of

sign in dX 1 1 /dx calculated from (12.14). For sufficiently

large x, it was found that Xol, X1 1 were approximately

proportional to X0 2, X1 2 respectively. In principle the

solutions obtained for Yo1 9 Yo 2 are valid, independent solutions;

but a serious difficulty arises because as x increases they

become dependent solutions to the accuracy of computation,

and in subsequent calculations all significant figures are
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lost through the differencing of very large and nearly equal

numbers.

The following procedure has enabled exponentially

decreasing solutions to be obtained without loss of accuracy.

The solution with initial conditions (12.12) is first

obtained as described. Then (12.8) is integrated backwards

from x - x E to x 0 with the initial condition

to obtain X1 1 (x); and Xl (x) is obtained from (12.7) by

likewise integrating backwards from x = xE to x = 0 with

the initial condition

By (12.6), (12.7) we obtain from (5.3)

'- 0 LOE) - te"T I&K}I~~-,.~)

Hence by (5.4), (12.15) and (12.16)

In order that (12.5) should hold, we choose

6y (12.b) the required solutions are
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= i x0 w 0.f i/2 12() d]20

Computing accuracy may be checked in the usual way by

changing the step-length or by evaluating the Wronskian by

(5.3) and comparing the value with that of exp[2J A du

(Equ. 5.4 and 12.5). Integration step-lengths have been

chosen according to the scheme in Table I. With = , k,

an accuracy of 1 in 106 has been maintained in the computations

undertaken.

Table 1. Ghoice of step-length according to h, where . is

tep_-length selected for 0.5 ( h - K 1.25 (km) -'

h <0: (-h)-h (m) -  ) - 1, i - 2, > 2

step-length hk

h > U: h - A (kim) - 2 0-0.5,0 1.25, 1.25- '.,o 5-s 5

step-length , 3

At the upper end of the interval (O,xE), the solutions

Y ol Yo2 are required to approximate to the WKBJ form of

- . . -. ., .. .. . . - .. ... -. . ..2i I



(6.12) in order to determine Cr 1 from (6.16). We define
0

LO

elY ('Lk ) *+ K

where Yoj, dYo./dx are obtained by numerical integration as

described above and may not necessarily be dKBJ solutions.

In (12.21), r = ro, ro being 1 or 2 according to the type

of upper boundary condition, i.e. whether K (x. ) < O or

K R (E)/h > 0. If the values of..r (X) approximate to a

constant value for a range of values of x at the upper end

of the interval (O,xE), then this constant value has been

taken to be the quantity defined by (6.16) in which Y

dY /dx are WKBJ solutions.
03

Calculations have been undertaken for a non-dissipative

atmosphere, i.e. one for which = = 0 and (10.17) holds.

Fig. 8 shows Y ol Yo2 at heights from 0 to 150 km for various

values of h for which the Case (i) integration procedure

applies. As h increases from 1 to 25 km, Y ol Y0 2 change

from an oscillatory to a mainly exponential form.

In choosing ro0 we need to consider the following relations

which derive from (6.9) and (7.9) on noting that for a

non-dissipative atmosphere G, Gx are real

K', K :~b/46
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Y0 V02  Zr0  Zr0 I Y Y02  Z Ii Zr0  Y01 02 Zr0, Zr,

150 -> 1 0' 0
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Fig. 8 Independent solutions Yol, Yo2 of the homcFeneous

equation (5.1). Values of h are shown on each

set of curves. Ca3e (i) integration procedure
R

applies. zRo1, Z I are the real and ima :inary
1' r 1

0 0
parts of Zro1 (Equ. 12.21) which etermines Cr

on approximating to a constart value with

increasing height. u;alculations are for the

scale height of Fir. I and ai non-dissipative

atmosphere having 7/5.
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K, =K =0

1<

where by (10.17)

For all cases in Fig.. 8 G(xE)> 0, where xN corresponds to

150 km altitude, and hence by (12.22) with x = xE the choice

ro - 1 complies with the upper boundary condition (iii) (b)

of 7, i.e. KR (x)/h > 0, KR,(XE)/h < 0. Also it may bero  roI lI

noted that condition (iii) (a) of 9 7 does not hold as K 1K 2 > >

by (12.22).

Values of Zr o1 calculated from (12.21) with r° = 1 are

plotted in Fig. 8 and above 100 km approximate to constant

values which determine C r  with an accuracy of the order

of lO-5 in comparison with Cr 2 = 1. The values obtained
0

for Cr0 I depend on the arbitrarily chosen solutions Yol' Yo2

and have no direct physical significance. Cr 1 enters the
0

analysis through (7.16) which is valid for any independent

solutions Y ol Yo2 and the corresponding value of Cr 0"

Fig. 9 shows Yol, Yo2 for various values of h for which

the Case (ii) integration procedure applies whereby one
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Fig. 9 As for Fig. 8 except that Case (ii) integration
procedure applies and Z1

r 1
0



exponentially increasing solution and one exponentially

decreasing solution are obtained. For h = 50 km,

G(xE) > 0 and t0= 1 as for the cases in Fig. 8. For

other values of h in Fig. 9 G(xE) < -[Gx(xE)/4G(XE) ] 2 < U,

and hence by (12.2I) K K< 0 and the appropriate choice

of r0 is r0 = 2 under condition (iii) (a) of 7, i.e.

K2 < 0 and K1  0.

For all cases in Fig. 9, r and Zr  decreases

at sufficiently great heights to very small values indicating

that Cr 1 O. 0r 1 is hcwever multiplied by Yo2 in the

producV C A Y and as Yo, increases indefinitely it doesr01 o

not necessarily follow that, the product is negligibly small.

The orders of magnitude of Z Ri at 150 km are shown in Fig. 9
0

and when multiplied by Yo 2 the product is seen to be

negligibly small compared with unity. The same result may

be established analytically using the relation

which follows from (5.5), (5.4) and (12.5). Then by

(6.16) and (12.25)

Cr- -

If ro 1, as for the case h = 50 km, G(x) > 0 for values



o0 x close to xE, and by (12.2c) and (12.26)

IC~~C( I~ U- 2 ~Y 2
-

Hence if Y o2 dY 0 2 dx are lar,-e compared with unity the

right-hand side of (12.27) is correspondingly small compared

with unity as G > 0. If r0 = 2 as for the other values of

h in Fig. 9, G(x) < 0 for values of x close to xE and by

(12.23) and (12.20)

Kt t -o, IsICj'X j1 = I K, >= d• 1 -' 2.

Hence for large Yo2, dYo/dx (which are positive for tne

exponentially iicreasing solution) the right-hand side of

(12.28) is correspondinrly small compared with unity as

KI

K> U.

15. Surface pressure oscillation due to a tidal potential

The variation of the surface pressure oscillation F,(U)

with tne equivalent depth h ha; seen extensively investigated

for different profiles of scale heignt H in connection with

the theory of atmospheric resonatnce. .,e foiiow earlier

procedure (Wilkes, 149; Jacchia c Aopal, lV52; 6iebert,

1961; nutler & Small, 19o3; Giwa, lbb) and ta e the ratio



where PrL is Fiven by (10.15) and Pe is the dimensionless

neig, nt-dependent function for the equilibrium tide.

For the solar semi-diurnal oscillation it is now

recognized trit the effect of tiiermal excitations dominates

the Fravitational tide, Out for the lunar semi-diurnal

oscillation this is clearly not the case and the evaLuation

of Y7 for the appropriate value of h .= 7.0U7 km) has Deen

of continuing interest. nv direct num, erical integrations

of the classical tidal equation, results for Y0 with

h k'.O/ Km have been shown -,o ue extreL.ely sensitive to the

choice of basic atmospheric properties, namely the profiles

of scale height and i\ewtoniatn cooling tJhap-.an > Lindzen,

l')70). In descriptive term3, the sensitivities arise from

tre setting up of a dependence on multiple reflexions between

tiorizontal surfaces at different heights which are critically

dependent on basic atmospheric properties. When the zonal

winds and latitudinal temperature gradients of a realistic

atmosphere are introduced the reflecting surfaces are no longer

horizontal and by integratJiw of the non-classical equations

multiple reflexions and resuLtinr sensitivities are found

to oe largely removed (Lindzen & Hong, il'74). 4e shall

nevertheless develop the anaLysis for by classical theory
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in view of tne earlier attention tiat it recelvec, -ut for

some range of values of h inclidirg h = 7.07 .,m it is

recognized that the results are riot realistic.

by definition the static equilibrium tide has zero

horizontal components of velocity, and hence fro. (;.3, and

(.12) YU =y = 0. From (3.5) we then obtain

By (10.15) with x , ,nd (i5..) with x 0, we may write

(13.1) by (10.15) all 12 as

= [~~ooI'sN (@utu chJ(0)/ 3

where the very small dependenice of J?.x) on x nas eeri

neglected. by (6.4), we mLay -men write (1 5 .z) as

where

An infinite response therefore arises for values of h

which satisfy

C



Usciliations for which i3.o) holds are referred to a :ree

oscillations.

We proceed on tne assure.totinat the atmospnere i2

non-dissipative, i.e. tr.at a 0 and tnat l6.l ),

(l .22) to (la.,Z4J Lolj. t?:, p.o s = L, :,y (l .)

Y Yooj = Yj(o) and (13.4) may oe written oy (3.lu) arid (5.11)

as

4hen Case (i) integration procedure applies, we obtain

on introducing (12.4) into (13.7)

Ahen Case (ii) inte{ration procedure applies such that

Y olx) nas an exponentially decreasing form and Y02 (X) has

an exponentially increasing form, we have that Cro = O.

Hence (15.7) gives by (12.6) and (12.7)

/x - -X )lt H (0)

In the special case when x L = 0, i.e. when yK J

solutions hold for all x, G(x) which is real by (1U.17)

has the same sign at all heigrhts otherwise (b.4) would be



invalidated. Under Case (i) integration procedure we have

that G(x) > 0, and from (12.2.2) it follows that the choice

ro = 1 complies with the upper boundary condition (iii) (b)

of 7, i.e. K r (x)/h> x)/h< (as h > 0 Dy (10.;1;
0 0

in which K + dH/dz> 0 for a realistic atmosphere). (6.16)

now holds for x = 0 and by (12.4) gives

Hence (13.8) becomes

= -~~~4 [ (0~t)j-~H

by (12.22). Under Case (ii) integration procedure we have

G < 0 and by (12.25) it follows that the choice ro = 2

complies with the upper boundary condition (iii) (a) of

I ~ I7, i.e. Kr (x)< O, Kr ,(x)> LI. AS C21 0 O, it follows
0 0

from (6.16) that A 21(x) = 0 and from (6.12) that

Hence

X () 5K. bc) o3

and (13.9) becomes

__ h i



[ ,~ ~ ~ K c,) - - - Kto)] F1 (0)- ) +-

by (12.25).

For an atmosphere of constant scale height 1, =X

G xx= 0 by (12.24), and (15.11) and (13.14) give

(13 i6}

Fig. iu shows (13.15) and (15.16) plotted on an Argand

diagram for a range of values of' h/hi. The only physical

quantity that enters into thz calculation of this curve is

-/, the ratio of specific neats for air, which is taken to

be 7/5. The semicircular part of the plot has radius K

and L is the point corresponding to the leading lunar

semi-diurnal mode with H = 7.6 Rm. At the origin

H _ (2 (13 ,.,7)

by (15.16). by (5.5), equation (15.17) gives

H (M.IS)
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- 2 26 2 20 1 o2 0 -02 h/Ho.O-

Fig. 10 Argand diagram of for a range of values

of h/H, where scale height H is constant.

= 7/5 and 41W =4( Y-)/ 8/7.

30-

20-

10-

-0.5 0 05 h/H / 2.0

Fi. l ii against h/H, where 9 is shown in Fig. 10.

7/5.
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Fig. ii snows tine ma -nification I)l as a function of h/n.

'tie main feature of this curve is the free oscillation at

h/H = -/ : for H = 7.6 kin th,- free ossiiatiori arises when

h = IU.o4 kmu.

For a realistic scale LeL Kht proli-e (jii&,. I) t.e

evaluation of t ty (lr.) cmr . &/eneraiiy requires

integrations of the nomo~ient-ous equation (5.1) over a

range (U, x,) for a vaiue xE such that vKix' solutions are

valid for x > xg. For the scale heiCht profile of i ,

7-I is sniown in Fig. 12 ior a range of values of h in Km.

("?he curve between: h - /.5 and 9 km is omitted to avoid

confusion with the part of tne curve between h = 4 aria

o km which it follows closely). On comparing Figs. 10

ano 1 (or Figs. ii and 15), tne chanfre from a constant to

a realistic scale height is seen to drastically effect the

response for values of h ;rom ab)out 4 to H km includinc4

that of the leading lunar semi-diurnal mode at L (Figs.

10 and 12).

in Fig. 13 the magnification 191 has a very sharp peak

at h = 6.77 km with a magnification of 16.5. ';ie lartrer

peak at h = 10.3 km is similar to that for a constant scale

height (Fig. 11) but the peak magnification, although very

large, is no longer infinite. The two peaKs of rigi. i

nave featured in previously puoiished response curves



-- 2'. 20 16 12 10 9 6 2 0 -2 - ---2 . 2,..- r" l , -

Fji . 12 Argand diagram of 9- for a range or v: +

of hi. H{ is taken from Fig. 1. =75

309

202

I00

-5 0 jo k ) 01

)*i',i;. 13 19 against h, where 1) is shown in Fig. 12.



(N ek s oi.es 1-4/; Vaccilia opal, 1-b2 JI.w6, .>

Holilin sworth, i-71). Giw- (i-d) obtainea :rmax:u:

h = ',.4 kir. witn a ma ;nification of 1.7; and a t.xirc

is ootained in the present calculations at a.,

it is too small to be apparc-nt in i 1ig. l aitourn i s

stiown b,- the ti2Lt loop in 2. 1 A. A still s:L< C

maximum obtained tby Giwa (1,OW) at h = 1.9 A- wouIa Tpea

to correspona to tne infiexion that is a.'tre., in the c,:ve

in Fie". i2.

As multiple ref.Lexions do not arise with a constant

scale height a more realistic result for -' might be

expected to be shown by 'ic. 1U tnan Fig. 1, in spite of

tr.e scale height approximation involvecl. UsinF the equation

ol tie locus snown in Fig. 10, Ohapman & Lindzen (1970)

pointed out that both the observed lunar 'elhi-Ciurnal

pressure amplitude of ,A-b and phase of are

quite well represented y t Hin B = .76 km. The i'red ted

phase can be read off directly from F'ir. IC, as tle anle uetleen

OL and the downward axis, ahere U is the origin. 1, is plotted

in Fig. i0 for H - 7.6 km and a phase of 6b0 is then obtained.

Associated with an ext 2r,. L,. a~pli~o tics. ,ote:,%i,

is an additional poteniai.il lr-oE arisine from deforTat ion.

of the Earth and a vertical velocity component at tr:e ;a'tL, .;

solid surface of -n'Jm /g where h' arid K :ire ove':, :. umoers.

. .. ... .. I I1 I N ' ' . .' .. . m I n a
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For ocean regkris an acdit Lonal vertical ve loci ty ,'- .

4OC is introduced oy the ocean uide and there i.z :;ino

additional potential qoC due to deiormation u: j ::e o3e:,::

(hollingsworth, 1971). If the individual excitaticn> >r'e

taken to be additive we have

11 (I +-A ~) 1,e- -t-R"C
(c3. ',

WO= woc--,..<.l

Then for a single mode by (2.21) and (2.22)

.4 = 1c

If the surface oscillations generated by (15.20) and (l .21

are denoted by PoS v PoW' the oscillation recorued [,y a

iand-Oased barometer is

?-o : *o ± + JZoE T T +<2

Tnre third term on the right-hand side is tne pressure

oscillation due to the small vertical cisplacement of

tne barometer -h'ilo/g o . For a single mode kl ..: :eco~re

uy (2.21) and (2.22)

i 0 ,



hence by (10.2), (10.12) and (iu.13) witn x = C

-p aoLp,(OO)w, _-_)w o[,

l Co) U

If the contributions of the oceans and atmospleric disatior:

are neglected we nave

-P - - 0,*- i -C.') J-1.E' N,, (0, 0)o€, . :

(1.25) shows that the elasticity of the Earth has the effect

of multiplying R E and hence the resulting tidal pressure

amplitude by (l+k-h'), i.e. oy about 0.70, whicn is the result

,ijven by Hoilinv;sworth (1'/1).

14. Discussion

Atmospheric tidal theory has been (eveiopeu and applieo ove:'

many decades, but a compreheisive analytical treatment aion,7

the lines of that of butler c Small (l')u5), which essentially

involves the forming, of jreen's functions, has been lackinr.

A aifficulty that soon arise.; in any such analysis is that o-

manipulating rather cumbersome equations. Close attention

nas therefore oeen given here to the choice of notati-n rind

lormulation: in particular it seemed wortnwr~ile jntrodu i:c



the symbol A for tile cross-product that frequently occurs.

A feature of the analysis has tneen the systematic formulation

of results for different atmoEu-heric variables, i.e. wird

components, temperature and pressure. trocgress in this

direction was helped by the introduction of the Y) notation

(Equ. 5.3) and the derivation of 05.10). inother feature

of tne analysis has been trie retention of the arbitrary

constants .oI' o *2 until they could be simultaneously

eliminated Dy the introduction of two boundary conditions to

Five the determinant (6.1) and thence the general relations

of § 8. The upper boundary condition foiLows earlier

accounts by adopting the radiaiion condition, but its

application in terms of WKBJ solutions is less restrictive

as tne actual structure of the atmospheric 'top' does not

need to be specified. At tile lower boundary the vertical

component of velocity is retained as tne usual assumption

of a zero value holds only for a surface-air interface

that is igid and horizontal. U ndulatio rs o; t' errain

interact with the primary atmo-uneric osci ,i'iorns and set

up new oscillations for which vertical velocity components

at tne surface are not necessariiy zero. Lurface tidal

motions are another source of excitation -t th.e lower

ucundary to wnich the present results are aiplicatle in terrr,

of' vertical motion.
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Application of the derived formulae to quantitativel'%

defined sources of excitation: has not been undertaker. witnin

tne scope of this paper. The analysis has however been,

developed for particular heights: the first case at the lower

boundary (d 10) leads to the evaluation of surface oscilation

weighting functions W for a range of solar diurnal andp

semi-diurnal modes (Equ. 10.16, Fig-s. C2 to , i). nhe second

oase is for hei hts above the region of excitation ana leads

to the evaluation of the thermal response weihtinz function

Wt for the same modes (Equ. li.., Figs. 5. to 7). t

have previously been presented graphically for a selection

of modes and proviae a useful means of understanding the

relationship between the vertical structure of a thermal

excitation and its resulting atmospheric response (,roves,

19/5, 1976, 1977).

No attempt nas been maje to define the Ii7mxtatioms of

classical theory in its application to the real .tmo0n.'3 re,

out reference is made in § 15 to the case of excitation v-y

the leading lunar semi-diurnil mode of tidal ootential for

which classical results may oe unrealistic. The tre-itii:ent

of the surface pressure oscillation due to u tidal potcntial

(1 15) has been of long-standing interest i-d provides an

example of the application of (10.15): the res,,lts otained

are Fratifyingly in close agreement with previous accounts.
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List of symbols

Reference Reference

a (2.13) Po Pooi

a,, a' (6.5)

aT (3.6) r' (6.11)

f (2.13) r (7.11)

g (1.4) s (2.9)

go (2.15) sjq BA (5.6)

h (1.2) t (2.2)

h' (15.19) t' (2.10)

hs (1.4)hn w 0(5.3)

k (15.19) x (1.1)

Table 1 x (5.4)
(2.2)

(22)XA (5.5)

J L xB (5.14)

P' iT' U' xE (12.15)

'v' 9w, . (2.22)V W AX L (7.2)



Re ference ,eference
xs (7.1) K ji*, ' * , , .i<

y (1.2)
Yl'Y2 (1.5) r

L 0ite 
of ocr ease

z (1.) 0 of te. era. '.re,
.. 7)

r A (b.C) h.

D o  D o j(5.7)

(4.1) N N=PUVa) (8.2)
E l, E l (6 .2 2 ) 1 A ( 0 1 5
F (3.18)

I, (2.21)
G (6.2)

P rressure
(12.4) 0 erturbation

r(1.) 0.17)sr

ns (1.5)

j(2.21) % oo

diabatic heatinr
Jo rate per unit

mass of atmosp;iere

c~(Q=(1.4) ,,,ij.i,
ns

sQn .i
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Reference te ference

CS , S4c (2.5) Y (12.2)

R (5.17) Y00, Yooj (13.4)

S (5.5) Ya , Yaj (b.1)

T (2.21) yP yTIyU,
yV y (}.

T temperature Y (3.
pert urbation

11 erturbation of P,T,U,V, @) (51 0, .i)
0 P,,,,4 6.c)

the eastward
wind comrionent rj k1,.21)

'/ (2.21)

V perturbation of ,.
0 the northward

wind component

(2.21)

perturbation of
the vertical

wind component

'oC (15.19)

p (10.1b) N " ..

t t(11.8) f .1)

WC  (13.21) .

(12.6) (t. i,4

x I (12.7) o4.-)

Y (5.2), (5.2) ..
[ Y' (5.2) €

0o Yoj(.)



eeference ?eference

oo  ~(2.15) V , ':) .

P, (o.8)

o (2.21) 6uperscrits

(r U (2.15), (2,21) R r a prft
(2.16), (2.21) i

(2.1) *comple x ocz;. u, at~e

- - o0) oj (5.2)

(11.1) Subscripts

(2.21) J 1, 2 refers o
.he two independ-

potential of ent solutions
applied force of (5.1)
per unit mass
of atmosphere r = 1, refers to

the two ,'KiK exr-
"10 C J10 (15.19) corctial iorms

C) JZE (13.20) x deriv&tive wit',
resoect to x

C~b(3.14) S

Symbol =
/ a^h = a1 bo.-a 2 b1
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